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Abstract 

Traffic congestion has become inescapable across the United States, especially in urban areas. Yet, 

support is lacking for taxes to fund expansion of the existing network. Thus, it is imperative to find 

novel ways to improve efficiency of the existing infrastructure. A major obstacle is the inability to 

enforce socially optimal routes among the commuters. We propose to improve routing efficiency by 

leveraging heterogeneity in commuter preferences. We learn individual driver preferences over the 

route characteristics and use these preferences to recommend socially optimal routes that they will 

likely follow. The combined effects of socially optimal routing and personalization help bridge the 

gap between utopic and user optimal solutions. We take the view of a recommendation system with 

a large  user base  but no ability to enforce  routes in  a highly congested  network.  We  (a) develop 

a framework  for learning individual  driver preferences over time,  and  (b) devise a mathematical 

model for computing personalized socially optimal routes given (potentially partial) information on 

driver preferences. We evaluated our approach on data collected from Amazon Mechanical Turk 

and compared with Logistic Regression and our model improves prediction accuracy by over 12%. 
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1 Introduction 

1.1 Background and Motivation 

According to data from the Bureau of Transportation Statistics and the World Bank [85], from 1990 

to 2018, the number of registered vehicles increased by 43% [85]. During that period, Vehicle-miles 

traveled (VMT) increased by over 63.4% [85] and the population size grew by 30.9% [85]. However, 

the total road mileage of public roads and lane miles increased by a mere 7.4%. The growth of 

the population and VMT combined with limited infrastructure expansion works have resulted in 

the swamping of the transportation capacity. In fact, rising traffic congestion is an inescapable 

condition in large and growing metropolitan areas across the world, causing huge economic losses 

and severely damaging quality of life. The report from INRIX [2], a company that specializes in 

car services and transportation analytics, showed that in 2017, the average U.S. commuter spent 

over 51 hours in traffic congestion and the congestion cost drivers $305 billion in direct and indirect 

cost, an increase of $10 billion from 2016. In large urban areas, these numbers were even grimmer. 

For example, the Los Angeles drivers spent an average of 102 hours sitting in traffic last year, which 

cost Los Angeles drivers over $2,828 on average, equaling more than $19.2 billion to the city as a 

whole. This cost includes the value of fuel, time wasted in congestion, and the increase in prices to 

households from freight trucks sitting in traffic. 

Besides the huge economic losses and impedance to quality of life, traffic congestion can in-

crease air pollution and negatively impact health. The Transportation Research Board, which is 

a division  of  the National  Academies,  a  private,  nonprofit  institution  that includes the National  

Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Re-

search Council, mentioned that vehicle emissions have become the dominant source of air pollu-

tion [1]. The increasing severity and duration of traffic congestion have the potential to greatly 

increase pollutant emissions and to degrade air quality [41]. In 2013, Zhang and Batterman used 

data from the Michigan Department of Transportation (MDOT) and Southeast Michigan Council of 

Governments (SEMCOG) to analyze the impact of pollution: they used an incremental analysis and 

concluded that air pollution (specifically NO2) increases exponentially with traffic congestion [100]. 

Hennessy and Wiesenthal found that when drivers experience traffic congestion, they more easily 

become aggressive and stressed. Using a Likert scale which is a type of rating scale, ranging from 

0 (low stress level) to 4 (high stress level), they found that when congestion is high, stress levels on 

the scale double (from 0.8 to 1.73) [43]. 
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Given the grim direct and indirect effects of congestion, there is an urgent need for a solution. 

Litman [57] mentioned that there are five congestion reduction strategies: (a) roadway expansion; 

(b) improvement of space-efficient modes (e.g., more bike lanes, more frequent public transportation, 

or more sidewalks and paths); (c) transport pricing reforms (e.g., road tolls that are increased 

under congested conditions, or increases in fuel price); (d) smart growth development policies (e.g., 

improve transport options, or parking management); (e) Transportation Demand Management 

(TDM) program (e.g., employee transport management, transportation management associations, 

or mobility management marketing). These strategies aim to provide an institutional framework 

for implementing strategies such as rideshare matching and pricing reforms, and in various ways 

encourage travelers to try efficient alternatives. 

Cambridge Systematics, Inc, which is an independent, employee-owned transportation con-

sultancy firm with corporate headquarters located in Medford, MA, also gave some strategies. In 

its report which was prepared for the Federal Highway Administration, it pointed out that there are 

three ways to deal with congestion: (a) adding more base capacity, (b) operating existing capacity 

more efficiently, and (c) encouraging travel and land use patterns that utilize the system in less 

congestion inducing ways [89]. 

In summary, congestion reduction strategies are of two types: they consist in either (a) 

expanding the network or (b) using the existing network more efficiently. Cervero mentioned that 

road expansion strategies require long planning horizons before they can mitigate congestion [19]. 

With population forecast to grow by 40 million by 2030 according to the U.S. Census Bureau [85] 

and public support to increase taxation to conduct the necessary infrastructure expansion works 

remaining low, there is an urgent need for innovation to improve operating efficiency of the existing 

road network with aim to minimize e.g., aggregate delay, congestion, or pollution. In order to 

reduce traffic congestion as soon as possible, we need to find a way to improve operating efficiency 

of the existing road network. 

A popular way  to improve  efficiency of  the  network is  to leverage  the  sharing economy,  e.g.,  ad  

hoc ride sourcing services such as Uber1 or Lyft2. Malhotra  and  Van  Alstyne  mentioned  that  even  

though the sharing economy is a good thing and can help transportation, it takes time to balance 

conflicting needs [62]. In their research, they showed that the ride sourcing services do not always 

carry commercial insurance, which is harmful to the economy and makes the sharing economy 

become the skimming economy. A natural way to improve traffic network operating efficiency is by 

1https://www.uber.com/
2https://www.lyft.com/ 
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ameliorating either commuter routing or mode choice. 

A common  method  is  to assign  users  to the  paths  of  smallest individual latency under  the  

current conditions, giving rise to a so-called user-optimal (or user equilibrium) solution. When the 

user equilibrium is achieved, the transportation cost of any traveler cannot be reduced by unilat-

erally changing routes. Dial presented a space- and time-efficient path-based solution algorithm 

for the classical static user-equilibrium traffic assignment problem [25]. It assumes that travelers 

choices are based on fixed, known situations, in contrast to real-word traffic situations. In order 

to create a more realistic model, researchers introduced a new framework named stochastic user 

equilibrium (SUE) model [23], which includes randomly-distributed elements in the drivers’ per-

ceptions. Even though it captures some of the uncertainties present in reality, it is hard to explain 

or observe all the factors that motivate path choice [96]. The stochastic user equilibrium model is 

hard to realize because characterizing one’s own preferences is a difficult task. In addition, the user 

equilibrium model is a suboptimal solution [40]. Guo et al. [40] used a mathematical method to 

prove the difference between the socially optimal solution and the user equilibrium solution. The 

upper bound on this difference can reach up to 1.429. The reason behind this difference is due to 

the user equilibrium solution’s ignoring the impact of each driver’s route on the overall traffic. 

A better way (at least in  theory) to improve  traffic  network efficiency is  by coordinating  

individual users in a centralized manner to achieve a socially optimal (also known as system optimal) 

solution. The system optimal solution optimizes overall network performance [61] through the use 

of a single central coordinator. Some researchers introduced a system that computes a system 

optimal traffic assignment [48]. However, this is an idealized model. It is unattainable in practice 

for several reasons. First, system optimal solutions assign some users to considerably longer routes 

for the benefit of others [80]. Since users are self-interested, they will choose routes that are best 

for them with little regard for the impact of their choice on the other users [9]. At the same time, 

empirical evidence shows that users are reluctant to follow advice generated from system optimal 

solutions [15]. Second, traditional metrics used in system optimal solutions are travel time [36], and 

travel cost (toll charge) [42]. Both are assumed to be identical for all users (homogeneous users) [97]. 

In fact, several studies have shown that users have highly heterogeneous preferences over routes and 

modes. Horton and Reynolds for example mentioned that commuters are influenced by a variety 

of factors such as distance bias, environment experience, and so on [46]. In a survey conducted 

in 1988 with responses of 2892 Seattle commuters, Spyridakis et al. investigated different metrics 

for routes (e.g., commute time, commute distance, commute safety, commute enjoyment) [84]. The 
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authors found that different commuters consider different characteristics when deciding which route 

to employ. 

The gap between the efficiency of the socially optimal (utopic) solution and the equilibrium 

(de facto) solution is referred to as the Price of Anarchy. In this project, we aim to investigate and 

exploit the heterogeneity in driver preferences in terms of the various route characteristics (e.g., 

path length, mode choice, tolerance level for travel time uncertainty, frequency of accidents, road 

works, or traffic jams) to propose socially optimal routes that are personalized to each driver and 

thus likely to be adhered to, thereby reducing the Price of Anarchy and improving routing efficiency. 

Specifically, we propose to bridge the gap between the socially optimal and user optimal 

solutions by learning individual user preferences over route characteristics to (a) better spread 

traffic in the network and (b) design personalized system optimal routes that are likely to be 

adhered to by even egocentric drivers. Our framework can be viewed as a system optimization 

solution integrating user preferences. 

1.2 Contributions 

The main contributions of our work in this project can be summarized as follows: 

• Curated Collection of Questions to Learn Driver Preferences. We use 2012 high-

way data from Archived Data Management System (ADMS), which is funded by the Los 

Angeles County Metropolitan Transportation Authority (Metro), to create a carefully cu-

rated data-driven collection of questions which, with minimal number of questions, can be 

used to successfully elicit preferences of drivers over routes. Each question consists of an 

origin-destination (O-D) pair and two routes (drawn from the 6 fastest routes between this 

origin and this destination). The two routes are mapped out and several characteristics of 

the routes are displayed (e.g., average travel time, chance that the travel time will exceed a 

certain amount, etc.). 

• Data Collection for Preference Elicitation. Using the carefully curated collection of 

questions, we created an online survey which asks users their personal characteristics (e.g., 

age, gender) and their answers to the questions. We posted this survey on Amazon Mechanical 

Turk (AMT)3 and gathered responses from over 400 individuals. 

• Learning User Route Choice and Modeling Uncertainty in User Preferences. We 

3https://www.mturk.com/ 
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propose a method for learning user route choice that also enables us to explicitly capture 

uncertainty in the preferences of users over routes. Our proposed approach first clusters users 

based on their responses to the survey and builds, for each cluster, an uncertainty set of all 

utility functions that are compatible with the answers to the survey. We evaluate our approach 

on the data collected from AMT. Compared with Logistic Regression, the standard approach 

for modeling user preferences in the literature, our method improves prediction accuracy by 

over 12%. 

• Socially Optimal Routes. We propose a mathematical optimization model for computing 

system optimal routes that account for user preferences. We build upon the multi-class socially 

optimal routing problem, mapping driver clusters constructed during the learning phase to 

classes. We augment the formulation with constraints that stipulate that users should only be 

offered routes that are close to their preferred route in the sense that the utility derived from 

the route offered should be close to the utility derived from their (personally) preferred route. 

This formulation yields solutions that bridge the gap between the socially optimal (utopic) 

solution and the user equilibrium (de facto) solution. A single design parameter can be used to 

control the trade-off between suboptimality (in the sense of social optimality) of the proposed 

solution and likelihood of adherence to the offered routes (from the user perspective). 

1.3 Structure of the Report 

The rest of the report is organized as follows. In Section 2, we review the literature related to our 

work. In Section 3, we describe the problem at hand. In Section 4, we introduce the mathematical 

models that are used to learn user preferences and to compute socially optimal routes. In Section 5, 

we present details about the survey (e.g., survey methodology and statistical analysis of the survey) 

and the model’s analysis. In Section 6, we describe how we implemented the proposed model and 

we conclude in Section 7. 
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2 Literature Review 

In this section, we review the literature relevant to our research. We focus on previous work on 

routing and preference learning and position our paper in this literature. 

2.1 Routing 

The Traffic Assignment Problem is the key problem for the long term planning and evaluation of 

urban transportation networks [28]. The objective of this problem is to assign the traffic flow of 

each OD pair to links of urban transportation networks. There are many types of traffic models: 

all-or-nothing assignment, incremental assignment, capacity restraint assignment, user equilibrium 

assignment (UE), stochastic user equilibrium assignment (SUE), and system optimum assignment 

(SO) [12]. The frequently used models are all-or-nothing, UE and SO. 

The all-or-nothing assignment consists in assigning all trips between a fixed origin and des-

tination to the links constituting a single shortest connecting path [24]. However, this model is 

unrealistic. Indeed, as Dial [24] pointed out, there are three main problems in this model: first, 

instability (a slight, insignificant change in input can yield significantly different output); second, 

failure to reflect actual behavior (cannot consider the effect of capacity restraint and unable to allow 

for realistic random variation of route selection among individual travelers), and lastly, inaccuracy. 

UE and SO were originally introduced by Wardrop [95] in 1952 as general principles for 

determining the assignment of traffic to alternative routes. In the first principle (UE assignment), 

journey times in all routes actually used are equal and less than those that would be experienced by 

a single vehicle on any unused route. In the second principle (SO assignment), the average journey 

time is a minimum at equilibrium. 

System Optimal Assignment. The SO assignment was first considered in the static setting 

[86, 53], which is called the Static SO assignment. It tried to improve traffic flow with a given 

traffic network information. However, the assumption that all information known is unrealistic in 

real life. In order to make this method more realistic, researchers focused their attention into the 

system optimum assignment in a dynamic setting. The Dynamic SO traffic assignment aims to 

determine time-varying link flows in a congested road network, where drivers are assumed to be 

cooperative in minimizing the total transportation time [37]. There are two general formulations 

of this problem: one is formulated based on link flows and the other is based on path flows. The 

main differences between these two are whether the traffic flow dynamics are in the constraints 
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(link-based) or in the objective function (path-based). 

In 1978, Merchant and Nemhauser [64] first considered, formulated and analyzed the dynamic 

system optimum assignment with link flows (the M-N model). This model only includes one desti-

nation and presents a non-convex feasible set, making it hard to solve [83]. Later, in 1987, Carey 

[17] modified the M-N model and developed a convex programming model for least-cost flow on a 

general congested network on which flows vary over time. Both models are formulated in discrete 

time. In 1989, Friesz et al. [33] improved upon the M-N model by allowing for flows to be contin-

uous in time. However, the model made by Friesz et al. is static, being based only on the current 

information of the traffic condition. In real life, the decisions may continuously change through time 

as network conditions evolve. However, the dynamic system optimum assignment is hard to solve 

because it involves both spatial and temporal interaction among the traffic, making it difficult to be 

described using a convex constraint set [83]. Ziliaskopoulos [102] developed a linear programming 

formulation for this problem. Even though its formulation only involves a single destination (but 

multiple origins), compared with the aforementioned formulations, it is more realistic. 

Another approach, which considers path flows, is introduced by Ghali and Smith [37]. In 

their work, they propose a procedure to evaluate the Path Marginal Cost (PMC, the change in 

network flow cost caused by an additional unit of flow on a certain path departed at a certain time) 

in a general time. This procedure overestimates the PMC [6]. Recently, Tajtehranifard et al. [90] 

combined the static and dynamic traffic assignment models, leveraging the computational efficiency 

of static traffic assignment models, and yet capturing the realism of the traffic flow, with less 

complexity and a lower computational burden. 

No matter which approach is used, all models assume that drivers accept the recommendations 

made by the route system. Yet, Schneider et al. [79] introduced a concept of the “Homo Economicus,” 

which characterizes humans as selfish rational maximizers of personal utility. Based on this concept, 

in selecting their routes, individuals usually like to obtain the highest benefits of their choices 

regardless of the impact of their choices on the other individuals, making the system optimum 

assignment unattainable in the real world. 

User Equilibrium Assignment and Route Choice. In the User Equilibrium assignment, no 

user can benefit by unilaterally changing his/her route/mode while others keep theirs unchanged 

[95, 32]. In the early deterministic user equilibrium model, individuals are assumed to have perfect 

knowledge about the path costs and choose the route that minimizes their own travel costs [10]. 
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Thus, users are assumed to be homogeneous in their preferences and omniscient about travel times. 

In reality however, both these assumptions fail to hold. Consequently, several researchers have 

relaxed these assumptions, aiming to explicitly capture the variations in individual perceptions or 

preferences, and reflecting the imperfect knowledge that individuals have about the network [60]. 

This improved framework is referred to as Stochastic User Equilibrium. It was introduced by 

Daganzo and Sheffi [22] who modeled errors/differences in individuals’ perceptions of costs (which 

can also be thought of as variations in preferences) by random variables. In 1982, Powell and Sheffi 

[69] proposed a mathematical programming model to address this problem. 

Two commonly used models for the random distributions of the errors (differences) in the 

costs/preferences are Gumbel [24] and Normal [22] distributions, corresponding to multinomial 

logit (MNL) and multinomial probit (MNP) route choice models, respectively. 

The MNL model was originally introduced by Daganzo and Sheffi [22]. The MNL model 

assumes that the random error terms are independently and identically distributed with the same 

fixed variances [81]. This assumption makes the MNL model unable to account for overlapping 

between routes and unable to account for perception of variance with respect to trips of different 

lengths [54]. In order to overcome these shortages, many researchers extended this model. These 

extensions can be classified into two groups according to their structure [71]. In the first group, 

either the deterministic or the random error term in the additive disutility function of the MNL 

model are modified while maintaining the Gumbel distributed random error term assumption. Zhou 

et al. [101] developed a model that captures the route similarity using different attributes in the 

commonality factors, representing a more realistic route choice behavior. To be able to relax the 

assumption of non-overlapping routes, the so-called path-sized logit model was introduced. In this 

model, a logarithmic correction term is used to account for different path sizes determined by the 

length of the links within a path and the relative lengths of paths that share a link [45]. In the second 

group, the assumption of a Gumbel distributed random error term is dropped. Models of this type 

are based on the generalized extreme value (GEV) theory [66], which uses a two-level structure to 

capture the similarity among routes through the random error component of the disutility function. 

Cross-nested logit (CNL) [70], the paired combinatorial logit (PCL) model [18], and the generalized 

nested logit (GNL) model [11] fall into this type. However, no closed-form MNL model has been 

provided to simultaneously address both route overlapping and route-specific perception variance 

problems in the literature [54]. 

The MNP model is an alternative to the MNL model [22]. It is based on the assumption 
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of a normal distribution for the random component [71]. Compared with the MNL model, the 

MNP model can handle route overlapping and identical perception variance problems which the 

MNL model faced [54]. However, the MNP model does not have a closed-form solution and it is 

computationally difficult when the choice set contains many routes. The common way to solve 

the MNP model is to use Monte Carlo simulation [82], Clark’s approximation method [39] or a 

numerical method [76]. 

Compared with the SO, the UE is able to capture the behavior of individuals as self-interested 

agents, resulting in a decrease in network performance [77]. The Price of Anarchy characterizes the 

gap between the UE and the SO. This notion was first introduced by Koutsoupias and Papadimitriou 

[56]. Youn et al. [98] analyzed the travel times in road networks of several major cities and found 

that in the worst case, PoA reaches 1.3, indicating that individuals waste 30% of their travel time 

by not being coordinated. 

In this project, we aim to bring the PoA to a value closer to 1, thus bridging the gap between 

the UE and SO solutions. In order to achieve this goal, we will leverage the heterogeneity in user 

preferences. Our work is thus closely related to the literature on utility theory and preference 

learning, which we discuss next. 

2.2 Utility Theory and Preference Learning 

Utility Theory. Utility theory is concerned with the study of quantitative representations of 

people’s preferences and choices [31]. It was originally introduced in 1982 by Kahneman and 

Tversky [49]. Morgenstern and Von Neumann [65], Savage [78], and Pratt [72] pointed out that the 

attractiveness of different alternatives depends on a) the likelihoods of the possible consequences of 

each alternative, and b) the preferences of the decision makers for those consequences. They can be 

estimated using probabilities and utilities, respectively [51]. Morgenstern and Von Neumann [65] 

provided three basic axioms about utility theory. The first axiom requires completeness: For any 

product pair p and q, either  product  p is preferred to product q (p q), product q is preferred to 

product p (q p) or  the  individual is  indifferent  (p = q). The second axiom is transitivity: For 

any product triple p, q and r, if  p q and q r, then  p r. The last axiom is a mathematical 

assumption about continuity of preference: There exists some probability such that the decision-

maker is indifferent between the “best” and the “worst” outcome. Almost all utility theory is based on 

these three axioms. Based on these three axioms, Ramsey [74] developed expected utility (Under 

uncertainty, individuals will choose the act that will result in the highest expected utility [73]); 
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Pareto [67] developed ordinal utility. Instead of obtaining an absolute quantity, it tells the consumers 

whether the commodity derives more or less or equal satisfaction when compared with another [55], 

and Fishburn [30] developed a skew-symmetric bilinear utility. Instead of having a single decision 

criteria, skew-symmetric bilinear utility is a useful general decision model that encompass many 

decision criteria [38]. 

Preference Learning. A core part of utility theory is concerned with preference learning (or 

preference elicitation). Preference learning refers to the problem of estimating the preferences 

of a single individual or a group of individuals [99, 47]. This notion is used in machine learning, 

knowledge discovery, information retrieval, statistics, social choice theory, multiple criteria decision-

making, decision-making under risk and uncertainty, and operations research among others. [35]. 

A preference learning model usually uses limited data with aim to correctly rank items in 

a choice set by order of  preference of  an  individual or group  of  individuals,  or to classify these  

alternatives into some pre-defined and ordered classes [29]. A preference learning model involves 

a set of  alternatives characterized  by a vector or features,  and  aggregates the information  about  

these alternatives to generate a satisfactory recommendation about the best choice, ranking, or 

classification. The model has the form of a utility function, binary relation, or a set of monotonic 

"if..., then..." decision rules [65]. 

Hüllermeier and Fürnkranz [47] leveraged supervised machine learning to establish the rela-

tionship between features describing individuals and preference models. Cohen et al. [21] learned a 

two-argument function PREF(u,v), which returns a numerical measure of how certain it is that u 

should be ranked before v. Fürnkranz  and  Hüllermeier  [34]  used  a  collection  of  training  examples  

which are associated with a finite set of decision alternatives to give a set of pairwise preferences 

between labels, expressing one label is better than another. 

Recently, researchers from the fields of machine learning, artificial intelligence, marketing and 

operations research, motivated in part by applications, have devised preference models and ways in 

which to illicit preference. Bertsimas and O’Hair [13] used integer optimization to address human 

inconsistency, robust optimization and conditional value at risk (CVaR) to account for loss aversion, 

and adaptive conjoint analysis and linear optimization to frame the questions to learn preferences. 

Since preferences/utilities are often hard to elicit precisely and that only incomplete information is 

available, several authors have proposed to take a robust optimization approach when optimizing 

utility. Dubra et al. [26] studied the problem of obtaining an expected utility representation for a 
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potentially incomplete preference relation. Armbruster and Delage [7] considered the problem of 

optimal decision making under uncertainty but assume that the decision maker’s utility function is 

not completely known. In their research, they considered all the utilities that meet some criteria, 

such as preferring certain lotteries over other lotteries and being risk averse (behavior of humans, 

who, when exposed to uncertainty, attempt to lower that uncertainty). March [63] have noted that 

human beings have unstable, inconsistent, incompletely evoked, and imprecise goals at least in part 

because human abilities limit preference orderliness. They pointed out that preferences’ predictions 

are inconsistent with observations of decision-making. Thus, predicting a users’ preferences is a 

difficult task. MacDonald et al. showed that there exist two different types of preference incon-

sistency: random and non-random inconsistency [58]. Random inconsistency is due to changes in 

mood, weather, and any number of random factors that cannot be directly measured [87]. Non-

random inconsistency is present when an entire group of users is similarly inconsistent in their 

choices (due to e.g., mores and traditions). 

Preference Learning in TAP. In TAP, there typically exists more than one way to travel be-

tween two places, which means that a route choice decision is involved [16]. Generally, individual 

preferences over routes vary based on route characteristics which in turn will influence their route 

choices [14]. Tilahun et al. [91] evaluated individual preferences for five different cycling environ-

ments by trading off a better facility with a higher travel time against a less attractive facility at a 

lower travel time. They used an adaptive stated preference survey to extract the individuals’ pref-

erences. Khattak et al. used a survey to study drivers’ diversion propensity [52]. They found that 

drivers expressed a higher willingness to divert if expected delays on their usual route increased, 

if delay information was received from radio traffic reports compared with observing congestion 

and if trip direction was home-to-work rather than work-to-home. Wardman et al. used the sur-

vey to detect the effect on drivers’ route choices of information provided by variable message sign 

(VMS) [94]. They used one question with different information to detect drivers’ preferences. 

In this project, we aim to learn driver preferences and leverage preference heterogeneity to 

offer them route recommendations that they will likely accept, thus relieving congestion effectively. 

11 
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3 System Model & Problem Description 

In this section, we begin by introducing the road network model that underlies our approach. We 

then introduce our model of commuters and their preferences. Finally, we describe the problem at 

hand. 

Road Network with Edge and Node Features. We consider a directed traffic network which 

we model by means of a graph G := (N ,A) with node set N and edge set A. Each  node  n 2 N 

represents an intersection in the traffic network and each edge e := (u, v) 2 A with u, v 2 N 

represents the directed road segment between intersections u and v (with traffic traveling from u 

to v). Existence of edge e = (u, v) in the set A indicates that there is a direct way to travel from 

u to v without passing through an intersection. Each edge e 2 A and each intersection n 2 N 

have (potentially stochastic) characteristics, which we collect in vectors ⇠e 2 Rne and ⇠n 2 Rnn ,e n 

respectively. These vectors may include, for example, the stochastic time needed to travel through 

the road segment and the stochastic wait-time at the intersection, respectively. They may also 

include deterministic characteristics, such as the number of lanes of the road and the presence or 

absence of a stop sign at the intersection, or simply the length of the road segment. 

Path Features. A path  is  a sequence  n1, . . . , nt of distinct nodes, together with an associated 

sequence e1, . . . , et 1 of edges such that ek = (nk, nk+1), k = 1, . . . , t  1. Given  a  path  p with nodes 

n1, . . . , nt, we  can  create  a  vector  of  features  (or  characteristics)  of  the  path  by  taking  nonlinear  

functions of the features of the nodes and edges involved in the path. Thus, the feature vector 
1)ne ⇥ Rtnn⇠p 2 Rnp of path p is given by ⇠p := ({⇠e }k=1,...,t 1), where : R(t ! Rnp 

(nk,nk+1)
, ⇠n 

n 
k 

maps the features of the nodes and edges traversed by the path into features of the path (e.g., 

maximum wait time at a given intersection, minimum number of lanes, and average travel time). 

Heterogeneous Commuters. On this road network, there is a large number D of heterogeneous 

drivers indexed by d 2 D. Each  driver  d aims to commute from an origin od 2 N to a given 

destination dd 2 N . Departing  from  the  literature  on  the  Traffic  Assignment  Problem,  we  associate  

with each driver a (known) feature vector fd 2 Rnd (including for example demographic information 

on the driver) and an unknown utility function ud : Rnp ! R which maps the features of a path 

to a number quantifying the utility that the drivers receives from choosing path p when traveling 

from a given origin to a given destination. Given two paths p and p0 with the same origin and same 

destination, we let p d p0 indicate that driver d strictly prefers p over p0, i.e.,  p d p0 if and only if 
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0 ud(⇠p) > ud(⇠p0 ). Accordingly,  we  let  p d p0 if and only if ud(⇠p) < ud(⇠p0 ). Finally,  we  let  p = d p 

if and only if ud(⇠p) = ud(⇠p0 ), i.e.,  driver  d is indifferent between the two options. 

Utility Model. In the literature, several mathematical models of utility functions have been 

proposed, such as random utility model [93], expected utility model [50], stated utility model [4], 

etc. In our research, we make the common assumption that the utility functions ud of each driver 
>d 2 D are linear, see e.g., [13]. Thus, ud(⇠p) := u ⇠p for some vector ud 2 Rnp . Drivers  can  choose  d 

from a set of paths P = {p1, p2, p3, ...} from od to dd. Following classical utility theory, we assume: 

1. For every pair p1 and p2 2 P and driver d 2 D, either  p1 d p2, p2 d p1 or p1 = d p2. 

2. For every triple p1, p2, p3 2 P, if  p1 p2 and p2 p3, then  p1 p3. 

Problem Description. We consider the problem of routing the heterogeneous commuters in this 

network in a way that minimizes overall congestion while offering drivers routes that are “close” (in 

terms of their own perceived utility) to their preferred route so as to maximize adherence to the 

recommended routes. Our approach proceeds in two steps, which we detail below: 

1. Clustering Drivers and Learning their Preferences. The first step of our approach 

consists in: (a) clustering drivers based on their personal characteristics and/or their answers 

to a small set of questions asking them to chose one of two alternative routes to travel from 

a given  origin  to  a given  destination, and  (b) determining, for each cluster, a utility function 

that minimizes the prediction error for the drivers in that cluster. Our proposed approach 

allows for inconsistencies in the user responses. 

2. Socially Optimal Personalized Routing. The second step of our approach consists in 

formulating a Socially Optimal Traffic Assignment wherein drivers are only assigned to routes 

that are “close” to their preferred assignment in terms of perceived utility. Our proposed 

approach is able to account for imperfect knowledge of the utilities of the drivers (due to e.g., 

inability to know all the features that enter the decision-making of users and/or inability to 

learn the utility functions after only few questions and/or inconsistency in responses for users 

in the same cluster). 
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4 Methodology 

In this section, we detail our proposed approach to learn driver preferences to propose personalized 

socially optimal routes bridging the gap between the utopic socially optimal assignment and the 

de-facto user equilibrium solution. 

4.1 Clustering Drivers and Learning their Preferences 

Preliminary Pairwise Comparison Data. We assume that we have at our disposal survey data 

about preferences of drivers on a collection of O-D pairs (details about the data collection can be 

found in section 5.1). The data takes the following form: we have a question set Q = {1, 2, . . . , Q}, 

where Q is the number of questions. Each question corresponds to a pairwise comparison of routes 

for the same O-D pair. Thus, associated with each question i 2 Q are two paths, Ai and Bi, with 

path features ⇠i and ⇠i , respectively.  Our  data  consists  of  a  carefully  curated  set  of  questions  QA B 

(The details is shown in Appendix). For each question i, each  driver  d 2 D has indicated: a) if 

they prefer route Ai over route Bi, denoted  by  Ai d Bi; b) if they prefer route B over A, denoted  

Ai d Bi; c) or if they are indifferent, denoted by Ai = d Bi. 

Clustering Drivers. Due to the personalization, our socially optimal assignment formulation is 

a large scale routing problem. In order to mitigate the ensuing computational challenges of solving 

for a socially optimal personalized assignment (More details are shown in Section 4.2), we begin 

by clustering users (aka drivers) so that drivers that belong to the same cluster will be assumed to 

have the same utility function, enabling us to reduce the complexity of the assignment formulation. 

As will become clear later on, this clustering approach has also added benefits in that it enables us 

to learn the utilities of the drivers better (improved out of sample performance) (More details are 

shown in Section 4.1). 

By definition, clustering is the assignment of a set of observations (in this case the drivers) into 

subsets (called clusters) so that observations in the same cluster are, in some sense, similar. There 

are three popular types of clustering algorithms: connectivity models [75], centroid models [20], 

and distribution models [88]. 

In our project, we employ the K-means algorithm, which belongs to the class of centroid 

models. K-means is a method used to automatically partition a data set into K groups [59], where 

K is a user-selected parameter. The algorithm initially selects K cluster centers and then iteratively 

refines them, as follows: 
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1. Each instance (in this case each driver) d 2 D is assigned to its closest cluster center. 

2. Each cluster center Ck, k 2 K is updated to be the mean of its constituent instances (in this 

case drivers), where K := {1, . . . ,K} is the set of cluster number. 

The algorithm iterates between 1 and 2 above and ends when there are no furthers change 

in the assignment of instances to clusters. In particular, at termination, the algorithm returns a 

partition of the set of drivers D into K subsets {Sk}k2K such that [k2KSk = D and Sl \ Sh = ;, 

8l, h : l =6 h. We  use  Sk to represent the set of users (drivers) belonging to cluster k, k 2 K. There 

are a total of K clusters in our problem. The number of clusters can be chosen in the training 

phase. For convenience, we let mk := |Sk| denote the number of users in cluster k. 

For our approach in Section 4.1, drivers in the same cluster should have similar answers to the 

train questions. In our project, we tried clustering drivers based: a) on their personal characteristics 

(demographics) only; b) on their answers to a subset of the questions only; and c) based on both. 

Learning Driver Preferences. We assume that all drivers within each cluster have the same 
>utility function uk(⇠p) :=  u ⇠p, k 2 K, for  some  uk 2 Rnp . In the next section, we propose an k 

approach for learning the vector uk. This assumption should hold if drivers who are similarly 

situated have similar preferences. Next, we propose an approach for learning driver preferences, 

i.e., values for the utility vector uk associated with all drivers belonging to cluster k, k 2 K. Fix  

Bthe cluster k 2 K. With  a  slight  abuse  of  notation  (ignoring  the  index  of  the  cluster),  we  let  SA ,i 

SB A, and  SA=B ✓ Sk, respectively  denote  the  sets  of  users  in  cluster  k which, for question i, prefer  i i 

B A B AA to B, B to A, or are indifferent, respectively. Thus, SA [SB [SA=B = Sk, SA \SB = ;,i i i i i 

B A A B B B A ASA \SA=B = ; and SB \SA=B = ;. Accordingly,  we  define  c = |SA |, c = |SB |,i i i i i i i i 

A=B A B B A A=Band c = |SA=B |, so  that  c , c , and  c represent the number of drivers in cluster ki i i i i 

who, for the ith question, prefer A to B, B to A, or are  indifferent, respectively.  

A BFor each cluster k and each question i, we  introduce  the  corresponding  binary  variables  y ,i 

B A A=By , and  y to indicate if, under the utility vector uk, A should be preferred to B, B should i i 

be preferred to A or users are expected to be indifferent. 
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Consider the following mixed-integer linear optimization problem with equally weighted errors: 

QP A B A B B A B A A=B A=Bmaximize (c y + c y + c y )i i i i i i 
i=1 

A B B A A=Bsubject to y + y + y = 1  8i 2 Qi i i 

A B(⇠i ⇠i ) ✏ M(1 y ) 8i 2 QA B i 
>uk 

B A(⇠i ⇠i ) ✏ M(1 y ) 8i 2 QB A i 
>uk 

+(⇠A
i ⇠B

i ) =  zi zi 8i 2 Q>uk 

+ z  ✏ + M(1i 
A=By )i 8i 2 Q (EW) 

zi  ✏ + M(1 A=By )i 8i 2 Q 

Ayi 
B 2 {0, 1} 8i 2 Q 

Byi 
A 2 {0, 1} 8i 2 Q 

A=By 2 {0, 1}i 8i 2 Q 

+ zi 0 8i 2 Q 

zi 0 8i 2 Q 

where M is a “big-M ” constant.  

A B A B A=B +The decision variables are uk 2 Rnp , y , y , and  y 2 {0, 1}, and  z and zi 2 R.i i i i 

A B A B A=BThe variables y , y , and  y indicate, for cluster k, question  i, and  under  the  utility  vector  i i i 

uk, if  A should be preferred to B (u> 
k ⇠

i 
A u> 

k ⇠
i 
B ✏), B should be preferred to A (u> 

k ⇠
i 
B u> 

k ⇠
i 
A ✏), 

> 
k ⇠A u> 

k ⇠B |  ✏). The variables z + 
ior users are expected to be indifferent (|u and zi are used, 
A=B 

j ⇠B |  ✏), to force the corresponding y 

In order to avoid the strict inequality constraints, we introduce ✏, which is small enough. If the 

utility difference is within ✏, we  predict they are  indifferent.  

An interpretation of the constraints is as follows. The first constraint ensures that we can 

only predict, for each question, one of the following options: A is preferred to B, B is preferred to 

A, or the two options are equally good. The second constraint ensures that if A is preferred to B 

then the utility derived from route A should be greater than the utility derived from route B. The 

third constraint admits a similar interpretation for the case when B is preferred to A. The fourth 

+constraint is used to define z and zi as the positive and negative parts of the difference in the i 

utilities of routes A and B. The fifth and sixth constraints ensure that if the two routes are equally 

good, then the difference in utility derived from the two options lies in the range [ ✏, ✏]. 

The objective of this problem is to maximize the number of users in cluster k whose preferences 

we predict correctly (in the training data). Indeed, each term in the summation in the objective 

>when we predict indifference (|uj ⇠A 
>u to equal one. i 
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function is the number of individuals for which the prediction was correct (equal to their actual 

choice). 

The model provided by Bertsimas and O’Hair [13] and our model both considered preference 

inconsistency. Bertsimas and O’Hair set the percentage of preference inconsistency in advance. In 

our approach, instead of giving the constraint on the preference inconsistency, we minimize it. 

Learning Driver Preferences with Weighted Objective. In the formulation above, all types 

of correct/incorrect predictions have the same cost. However, in practice, there are some errors that 

are more “costly” than others in terms of the traffic assignment problem we ultimately solve. For 

example, if the user states that he/she is indifferent, incorrectly predicting they will pick route A 

(or equivalently route B) is  not a  grave  mistake  since  it  will  yield  an acceptable  recommendation.  

On the other hand, predicting that the user will choose route A when he really prefers route B 

is a more serious error and should be more costly. Based on this analysis, we revise our model 

as shown below. The formulation is almost identical to the one employed above. We only modify 

the objective function. In this formulation, we introduce a weight w 2 [0, 1], which represents the 

penalty when our predictions are either the exact opposite of the preferences entered by the users 

or when the users have a clear preferences (they either prefer A or B), but we predict that they 

will be indifferent. The corresponding weight (1 w) corresponds to the cost incurred when users 

have no preference and we incorrectly predict that they will prefer either A or B. 
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QP B A B A A B A B A=B A=Bminimize [wc (1 y ) +  wc (1 y ) + (1  w)c (1 y )]i i i i i i 
i=1 

A B B A A=Bsubject to y + y + y = 1  8i 2 Qi i i 

> A B(⇠i ⇠i ) ✏ M(1 y ) 8i 2 QA B iuk 

> B A(⇠i ⇠i ) ✏ M(1 y ) 8i 2 QB A iuk 

> +(⇠i ⇠i ) =  z 8i 2 QA B i ziuk 

+ A=Bz  ✏ + M(1 y ) 8i 2 Qi i 

A=Bzi  ✏ + M(1 yi ) 8i 2 Q 

Ayi 
B 2 {0, 1} 8i 2 Q 

Byi 
A 2 {0, 1} 8i 2 Q 

A=By 2 {0, 1}i 8i 2 Q 

+ zi 0 8i 2 Q 

zi 0 8i 2 Q 

(GW) 

Evaluation of the Proposed Approaches. In both methods, the objectives are the same, 

predicting the users’ preferences with as few errors as possible within each cluster. There are two 

types of accuracies that are worth investigating: accuracy in the prediction of preferences for new 

users and accuracy in predicting user preferences for new routes for existing users. In Section 5, we 

will investigate the performance of our approach for both settings. 

4.2 Socially Optimal Personalized Routing 

Having learned the user/driver preferences (in a cluster-wise fashion), we next propose to use 

heterogeneity in the driver preferences to improve efficiency of the overall transportation system. 

Specifically, we propose a model that accounts for user preferences to ensure adherence to the 

socially optimal solution. 

Using the same notation as in Section 3, we introduce our personalized routing problem. We 

let W ✓ N ⇥ N denote a set of O-D pairs in the road network (these do not necessarily coincide 

with the O-D pairs that we used in the questions, see Section 4.1). For each specific O-D pair 

w 2 W, we  use  Rw to represents all the possible route choices for that pair (In this project, we only 

consider the 10 fastest route choices in terms of expected travel time). For each route r 2 Rw, the  

wset of links through which it passes is well defined and we let = 1  if and only if route r passes er 
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through link e; = 0 else. 

We assume that we have clustered users into K clusters indexed in the set K using the 

approach from Section 4.1. We use dk to represent the traffic demand for cluster k 2 K and the w 

specific O-D pair w 2 W, which we assume to be perfectly known. Using the model we generated 

in Section 4.1, for each cluster k 2 K, we  have  a  corresponding  utility  vector  uk 2 Rnp . Letting  

⇠r 2 Rnp denote the feature vector of path r 2 Rw, the  utility  of  route  r for users in cluster k is 
>given by uk(r) = u ⇠r. The maximum utility derived from a user in cluster k that need to travel k 

? >through O-D pair w 2 W is given by u (w) := max u ⇠r.k r2Rw k 

Using the information above, we formulate a mathematical optimization problem inspired 

from the multi-class traffic assignment formulation from the literature, see [68]. For eack k 2 K 

(k,w) (k,w)and r 2 Rw, we let  yr 2 {0, 1}, so that  yr = 1 if at least some individuals in cluster k using 

(k,w)O-D pair w employ route r 2 Rw. We  let  fr denote the traffic flow for route choice r 2 Rw 

contributed by cluster k. The decision variable ve represents the traffic flow passing through link 

(k,w)e. We  use  ve to represent the traffic flow through link e that is contributed by cluster k and 

used to satisfy the traffic demand for O-D pair w. Given  an  instantaneous  flow  x, t(x) represents 

the associated travel time. 

We propose to only allow routes to be offered to users whose utility is within of the utility of 

their optimal route; here is a parameter selected by the network operator (e.g., the route recom-

mendation system). This ensures that drivers are likely to adhere to the route choice recommended 

to them. 

minimize 
P R ve t(x)dx0 
e2A 

subject to 
P (k,w)f = dk 

r w 8w 2 W, k  2 K 
r2Rw 

(k,w)fr 0 8r 2 Rw, w  2 W, k  2 K 
P P (k,w)ve = ve 

w2W k2K 
P(k,w) w (k,w)ve = fer r 

8e 2 A 

8k 2 K 

(1) 

r2Rw 

(k,w) (k,w)fr  Myr 8r 2 Rw, w  2 W, k  2 K 

⇤u (w)k uk(r)  +M(1 (k,w)yr ) 8r 2 Rw, w  2 W, k  2 K 

(k,w)yr 2 {0, 1} 8r 2 Rw, w  2 W, k  2 K 

An interpretation of the constraints is as follows. The first constraint ensures that the demand 

for each O-D pair w 2 W and each cluster k 2 K is satisfied. The second constraint ensures that 
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all traffic flows are non-negative. The third constraint defines the traffic flow through link e as the 

sum of the traffic flows through link e that are associated with each cluster k and each O-D pair 

w. The  fourth  constraint  ensures  that  the  traffic  flow  through  link  e contributed by cluster k is the 

summation of all the routes r 2 Rw traffic flow contributed by cluster k, if  this  route  r consists 

of link e. The fifth constraint ensures the route that will be chosen having its utility value in an 

⇤acceptable range (u (w) uk(r)  ).k 

The objective of this formulation is to minimize the travel time over the entire network 

(socially optimal). This socially optimal objective is counterbalanced by the requirement to offer 

user routes that meet, to the extent possible, the user preferences (approximation to user optimal). 

20 



5 Experimental Results 

In this section, we begin by presenting the survey design procedure and data gathering approach 

that we used in order to learn user preferences. Then, we describe the results of our preference 

learning model and compare it to the results of other commonly used preference learning models. 

5.1 Survey Design Procedure and AMT Data Gathering 

Historical Traffic Data. The historical traffic data we used to generate the survey is the 2012 

highway data from the Archived Data Management System (ADMS). This system is funded by the 

Los Angeles County Metropolitan Transportation Authority (L.A. Metro). All data was captured 

by multiple sensors on Los Angeles’s highways. It includes distance between two arbitrary adjacent 

sensors and every 15 minutes the sensors collected the travel speed. We used the data to calculate 

the travel time for each link and combined them together to get the travel time for the routes. The 

travel time we considered is during the morning period of 9:00 AM-12:00 PM. The other information 

we considered is the minimum travel time during this period and the chance that the travel time will 

be longer than a constant time (more details are presented later). We also collected information on 

traffic accident incidences. Specifically, the percentage of total year traffic accidents was obtained 

from the Statewide Integrated Traffic Records System4 , which is a database that serves as a means 

to collect and process data gathered from a collision scene. 

Survey Design. Based on the previous research [91], in our survey, we collected two different 

types of features from the drivers: demographic characteristics and preference information from 

carefully curated route choices for given O-D pairs. 

We collected the following demographic information which may play a role in individual 

preferences over route characteristics: gender, age, martial status, number of dependents in their 

families, education level, ethnicity, employment status, and driving years. Past research has shown 

that demographic differences can influence the drivers’ preferences [16]. 

With regards to route choice, we considered the following features for each route which are 

important determinants of route choice [44, 27, 92]: distance (miles), average travel time (minutes), 

minimum travel time (minutes), chance that the travel time will be longer than a constant, percent-

age of total yearly traffic accidents on this route and number of different freeway interchanges on 

this route. A sample question is shown in Figure 1. The full survey can be found in the Appendix. 

4http://iswitrs.chp.ca.gov/Reports/jsp/userLogin.jsp 
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Figure 1: Sample Question 

To identify suitable route choice questions, we proceeded as follows. First, we mined the 

traffic data and selected O-D pairs for which there existed several routes with different traffic dis-

tribution patterns (e.g., different expected travel time and different standard deviation or skewness 

characteristics). For these O-D pairs, we only selected routes that were among the 10 fastest routes 

in terms of expected travel time (the idea is that if the expected travel time is too long, the other 

characteristics of the route become unimportant). For the chosen O-D pairs and among all such 

routes, we manually selected route pairs that resulted in “interesting” comparisons: we only selected 

pairs of routes where one did not clearly dominate the other one. We identified 15 such route pairs 

(aka questions). To keep the survey length tractable in length to the respondents, we asked each 

participant 15 questions. For each question, based on the six features provided for each route and 

the map of the routes, the respondent provided their preference (i.e., indicate which route they 

prefer: Route A, Route B or that they are indifferent). 

Data Gathering on Amazon Mechanical Turk. We posted our survey on Amazon Mechanical 

Turk (AMT)5 , which operates a marketplace for work that requires human intelligence. We were 

able to collect 457 answers, 446 of which were valid. We identified invalid responses, which we 

discarded, as follows: we added to the survey one question (pairwise comparison) in which one of 

the answers strictly dominated the other one in all respects. If a respondent chose the dominated 

option and completed the survey within 2 minutes (the average completion time was 6 minutes and 

5https://www.mturk.com/ 
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the standard deviation was 2.87 minutes), we discarded the answers from this respondent. 

Demographics of Respondents. The demographics of the survey population are summarized 

in Figure 2. There were 276 (resp. 170) males (resp. female) respondents). Most respondents’ ages 

fell into the range [25, 34]. Most  respondents  were  single  or,  if  married,  had  children. Out  of  the  

446 respondents, 310 had less than or equal to 2 dependents. A total of 127 respondents had 3 

to 5 dependents and only 9 individuals had more than 5 dependents. Among all the respondents, 

there were 117 who had a high school diploma, 204 people who had an undergraduate degree, and 

125 people who had a graduate degree. Even though around 61.6% of the respondents had jobs 

unrelated to driving, the majority of people answering this survey had more than 5 years driving 

experience. 

Question Prefer Route A Prefer Route B No Preference 
Q1 163 268 15 
Q2 217 198 31 
Q3 79 342 25 
Q4 340 96 10 
Q5 308 107 31 
Q6 172 257 17 
Q7 182 236 28 
Q8 359 71 16 
Q9 323 104 19 
Q10 96 337 13 
Q11 148 286 12 
Q12 142 251 53 
Q13 110 284 52 
Q14 322 98 26 
Q15 158 200 88 

Table 1: Survey Responses for each Question 

Route Choices of Survey Respondents. A summary  of  the  survey  questions’ responses  is  

shown in Table 1. 

5.2 Preference Learning Results 

Having collected the preference data from AMT, we now evaluate our proposed preference learning 

schemes from Section 4.1 on this data; in particular, we study the in- and out-of-sample performance 

of our approach and evaluate the impact of the clustering method. 
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Figure 2: Summary of the Demographic Information from AMT Survey 

Splitting the Data into Training and Testing. Based on Section 4.1, we investigate the 

performance of our approach in two contexts: a) prediction of route preferences for new users; and 

b) prediction of preferences over new routes for existing users. Depending on the prediction task 

we split the data in two different ways: in case a) we split the participants into train and test users 
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(80% train data, and 20% test data chosen at random); in case b) we split the questions into train 

and test questions (5 training and 10 testing). The 5 questions used for training were chosen as 

follows. We classified the questions into three types: 

1. Route choices are obviously different. In our survey, Q3, Q4, Q5, Q8, Q9, Q10, Q13, and Q14 

belong to this type. For example, Q5 in Figure 3 shows that Route A dominates Route B in 

regards to the first three features while Route B dominates route A in the last two features. 

Figure 3: Routes Choices Are obviously Different 

2. Route choices are different but the difference is not trivially obvious. In our survey, Q1, Q2, 

Q6, Q7, Q11, and Q12 are of this type. An example is shown in Figure 4, which is Q6 in our 

survey. Figure 4 shows that the average travel time, percentage of total yearly traffic accidents 

and the number of freeway interchanges have no differences between the two routes. Only two 

features show any difference, which are travel distance and the chance that the travel time 

will be longer than a constant time. 

3. Route choices are indifferent. In our survey, Q15 belongs to this type, which is shown in 

Figure 5. From Figure 5, we can find that the differences of the features are not significant 

except for a slight difference in the number of freeway interchanges. 

Their ratio is 8:6:1. We randomly picked 5 questions out of the 15 questions followed by the 
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Figure 4: Route Choices Are not obviously Different 

Figure 5: Route Choices Are Indifferent 

above ratio. The 5 questions that ended up being selected were Q2, Q3, Q4, Q7, and Q15, see 

Appendix. We use these as the train questions during this whole section. 
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Cluster Strategy Accuracy in sample Accuracy out of sample 
C1 : Demographic  information  60.86% 56.18% 

C2 : Answer  to  route  choice  questions  66.91% 63.27% 
C3 : C1 and C2 combined 63.73% 59.46% 

Table 2: Accuracy on the Training and Testing Sets based on Different Clustering Methods 

Choosing a Clustering Strategy. There are two types of information collected by the survey, 

and we propose to investigate the performance of the three different clustering strategies for the 

survey respondents: 

C1 Clustering respondents based on drivers’ demographic information; 

C2 Clustering respondents based on drivers’ answers to route choice questions in the survey; and 

C3 Clustering respondents based on both drivers’ demographic information and drivers’ answers 

to route choice questions. 

We tried all three clustering strategies, varying the number of clusters from 1 to the number 

of users (250 in this instance). Table 2 shows the best accuracy for each clustering strategy in 

sample (on the training set) and its corresponding result out of sample (on the testing set). From 

this table, it can be seen that C2 has the highest accuracy. Therefore, for the remainder of our 

analysis, we use clustering strategy C2. It is interesting to note that clustering individuals based 

on their demographic information alone (strategy C1 ) yields  the  worst  results  among all clustering  

strategies. Having identified C2 as the best clustering strategy, we now investigate the performance 

of the preference learning models EW  and GW mentioned in Section 4.1. 

5.2.1 Formulation EW  using all the features 

First, we investigate the performance of Formulation EW, which is shown in Section 4.1, to learn 

the utility function of the users in each cluster. 

We investigate the performance of our approach as we vary the number of clusters; the aim 

being to make as many correct predictions as possible. We tried all possible cluster sizes, ranging 

from all users in one cluster to all individuals as a single cluster. If we only have one cluster, even 

though it can simplify the model, it assumes every driver has the same preference. In this situation, 

drivers may not follow the provided recommendations in real life. Another extreme situation is 

that each individual as a single cluster. In theory, it can capture the driver’s preference perfectly 

if we have enough information for this individual and all his/her choice is consistent with his/her 
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preference, which is unrealistic in real life. For each question, we compare our results with the 

conventional approach from the literature: Logistic Regression [3, 5, 8]. The results are shown in 

Figures 6 

Figure 6: Accuracy Comparison In Sample and Out of Sample: Proposed Approach vs Logistic 
Regression 

Figure 6 shows the average accuracy rate using our approach and the Logistic Regression 

Method among all training questions. We vary the number of clusters from 1 to 250. With our 

proposed approach in sample, the accuracy range is [0.4, 0.65]. If we remove the situation that we 

only have one cluster, the accuracy range becomes [0.5, 0.65], which is smaller than the accuracy 
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Table 3: Proposed Approach In Sample 
(a) Counts 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  5465 353 2443 8261 
A = B 987 143 759 1889 
A < B  1920 388 5382 7690 
Sum 8372 884 8584 17840 

(b) Percentage 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  65.3% 39.9% 28.5% 133.7% 
A = B 11.8% 16.2% 8.8% 36.8% 
A < B  22.9% 43.9% 62.7% 129.5% 
Sum 100.0% 100.0% 100.0% 300.0% 

range provided by Logistic Regression ([0.35, 0.65]). From the figure, we see that a) using our  

approach, the accuracy rate range is much smaller than using Logistic Regression, indicating that 

the result generated by our approach is stable. In addition, the accuracy of our approach remains 

approximately constant as the number of clusters is varied. On the contrary, the accuracy of 

the Logistic Regression has a far higher variability and decreases fast as the number of clusters 

is increased; b) comparing  these  two approaches,  we  can  find  that our approach’s  performance  is  

better than Logistic Regression’s performance. We can get the same conclusion for the test data. 

In addition, from this figure, we can find that using our approach, the accuracy difference between 

the train data and test data is not huge, which indicates that our approach can capture the users’ 

preference correctly. 

Based on the above results, we set the number of clusters to four for both our approach 

and Logistc Regression. Table 3 and Table 4 show the prediction situation using our approach and 

Logistic Regression approach across all questions. For both tables, part (a) is  the  number of correct  

predictions and part (b) is  the  percentage  correct.  For both  tables,  the  elements  in  the  diagonal  are  

the number when our prediction is the same as the users’ choices. Other elements are the incorrect 

prediction (which means that our predictions are different from their choices). 

From Table 3 and Table 4, we can see the number of strict correct predictions (predicting the 

same answer as the users’ selected) is 10990, which is 61.6% and if we get rid of the no preference 

option, the percentage increases to 64.0%. Table 4 shows the results using Logistic Regression. 

From Table 4, we can find that the number of strict correct predictions is 10878, which is similar to 
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Table 4: Logistic Regression Approach In Sample 
(a) Counts 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  5190 328 3709 8872 
A = B 1085 226 1122 2433 
A < B  2097 330 3421 6535 
Sum 8372 884 8584 17840 

(b) Percentage 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  62.0% 37.1% 23.3% 122.4% 
A = B 13.0% 25.6% 13.1% 51.6% 
A < B  25.0% 37.3% 63.6% 126.0% 
Sum 100.0% 100.0% 100.0% 300.0% 

our approach. The correct prediction percentage is 61.0%. Without the no preference option, the 

correct prediction percentage increases to 62.8%. It seems that our approach and logistic regression 

are similar if we only consider the train data. However, when we apply our approach and Logistic 

Regression Method into the test data, our approach shows a great advantage. The results are shown 

in Table 5 and Table 6. 

From Table 5 and Table 6, we can find that our approach is better than Logistic Regression. 

When we consider the test data, we get the number of strict correct prediction is 2789 and its 

corresponding accuracy rate is 62.5%. While using Logistic Regression, the number of strict correct 

prediction is 2408 and its corresponding accuracy rate is only 55.0%. In addition, comparing Table 

3 with Table 5, we can find that accuracy rate in the test data is a little higher than the accuracy 

rate generated using train data. This difference is not huge, which indicates that our approach is 

stable. 

5.2.2 Formulation EW  using subset of features 

When we obtained the utility function, we find that the last feature (Number of different freeways on 

the route) is  not  significant.  In this  section,  we  delete  the  last feature  (Number of different freeways 

on the route) and  only use  the  first  five  attributes  to formulate  each  cluster’s  utility function.  

The accuracy results are shown in Table 7 and Table 8. In order to be comparable with our 

previous results, here, we still cluster users into 4 groups. 

We can compare Table 3 with Table 7; Table 5 with Table 8. First, from Table 3 and Table 
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Table 5: Proposed Approach Out of Sample 
(a) Counts 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  1414 103 536 2051 
A = B 213 52 203 467 
A < B  516 102 1324 1942 
Sum 2143 254 2063 4460 

(b) Percentage 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  66.0% 39.8% 26.0% 131.7% 
A = B 9.9% 20.1% 9.8% 39.9% 
A < B  24.1% 40.2% 64.2% 128.4% 
Sum 100.0% 100.0% 100.0% 300.0% 

Table 6: Logistic Regression Approach Out of Sample 
(a) Counts 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  1198 101 656 1955 
A = B 213 51 203 467 
A < B  732 102 1204 2038 
Sum 2143 254 2063 4460 

(b) Percentage 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  55.9% 39.8% 31.8% 127.5% 
A = B 9.9% 20.1% 9.8% 39.9% 
A < B  34.2% 40.2% 58.4% 132.7% 
Sum 100.0% 100.0% 100.0% 300.0% 
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Table 7: Proposed Approach In Sample Results with Feature 6 Dropped 
(a) Counts 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  6714 602 4510 11826 
A = B 48 32 26 106 
A < B  1610 250 4048 5908 
Sum 8372 884 8584 17840 

(b) Percentage 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  80.2% 68.1% 52.5% 200.8% 
A = B 0.6% 3.6% 0.3% 4.5% 
A < B  19.2% 28.3% 47.2% 94.7% 
Sum 100.0% 100.0% 100.0% 300.0% 

Table 8: Proposed Approach Out of Sample with Feature 6 Dropped 
(a) Counts 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  1574 190 1021 2785 
A = B 15 4 62 81 
A < B  554 60 980 1594 
Sum 2143 254 2063 4460 

(b) Percentage 

Response 
Prediction 

A > B  A = B A < B  Sum 

A > B  73.4% 74.8% 49.5% 192.2% 
A = B 0.7% 1.6% 3.0% 4.0% 
A < B  25.9% 23.6% 47.5% 103.7% 
Sum 100.0% 100.0% 100.0% 300.0% 
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�7, we can find when the user predicts A B, the  accuracy  using  this  new  utility  function  is  higher  

than the previous one (when we use all five attributes to formulate the utility function). The correct 

prediction when users prefer route A increases from 5465 to 6714, increasing 18.6%. However, the 

accuracy of predicting the users’ preferences when users choose no preference or prefer route B 

decreases. We can get the same conclusion when we compare Table 5 and Table 8. 

5.2.3 Formulation GW 

As we mentioned in Section 4.1, each type of violation should have different penalty values. Here 

we take this into consideration and generate the accuracy change as the penalty value changes. The 

results are shown in Figure 7. In order to be comparable with the previous results, we still cluster 

the users into 4 groups. 

Figure 7: Accuracy as a Function of the Weight w 

From this graph, we can find when we increase the penalty value w mentioned in Section 

4.1, the percentage of correct predictions increases. When the penalty value is equal to zero, it 

means that we have no penalty for exact opposite prediction and no penalty for the prediction is 

no preference even though users have preferences, while it has a heavy penalty for the violation 

when users have no preference and we give them a specific preference. In this situation, in order to 

minimize the objective value, we will predict all users have no preference. As w increases, we can 
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predict some specific preferences. In the extreme situation, when w is equal to one, it means that 

we do not care about the users who have no preference. In this situation, just randomly give them 

a specific preference.  

Figure 7 gives us a hint that we need to choose a smart penalty value so that we can obtain 

a good  utility function  for each  cluster.  
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6 Implementation 

A typical  application  of  this  project is  the  transportation  system of  major urban  centers  such  as  Los  

Angeles. This project uses mixed integer linear programming to learn the utility function and then 

based on these utilities develops route suggestions to users. The implementation of our proposed 

mechanism requires suitable programming software tools such as Python, R, etc. It also requires 

using the survey we generated to obtain information about users’ preferences. The information in 

the survey is created using Python and the entire solution framework is implemented in R. 
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7 Conclusion and Future Directions 

In this report, we study the problem of reducing the congestion while taking the users’ preferences 

into consideration. In this problem, the routes’ features are known in advance. Next, we use these 

routes’ features to generate the survey and use this survey to collect the users’ information about 

its preferences. We use this collected information and use integer linear programming to formulate 

the users’ utility function. 

In this problem, we use integer linear programming to formulate the utility function, consider-

ing the users’ inconsistency. We compare the absolute number and percentage of correct predictions 

with the Logistic Regression method. The experimental results show that our proposed approach 

has better performance than the Logistic Regression method in both the train and test data and 

show that our prediction is stable no matter how many clusters we have. We also revised the 

formulation to reflect the fact that not all incorrect predictions are of the same magnitude and we 

added different weights to different incorrect predictions to the formulation. 

More work can be done along the lines of improving the personalized options. For example, 

in our research, we only include highways. Side roads have more characteristic that may influence 

the users’ choice. In addition, we can develop online algorithms for learning the preferences of the 

users. 
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By clicking on “Next”, you confirm that you have read the information provided above, have been given a chance 
to have your questions answered, and agree to participate in this study. 

Basic Information 

Please specify your gender 
Male 

Female 

Other 

Please specify your age 

Under 25 years old 

25-34 years old 

35-44 years old 

45-59 years old 

60 years old or older 

Please specify your martial status 

Single 

Married with children 

Married without children 
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Divorced 

Widow/Widower 

Please specify the number of dependents in your family 

Less than or equal to 2 

3-5 

more than 5 

Please specify your highest degree or level of school you have completed. If currently enrolled, highest degree 
received. 

High School Diploma 

Undergraduate Degree 

Graduate Degree 

None 

Please specify your ethnicity 

White 

Hispanic or Latino 

Black or African American 

Asian / Pacific Islander 

Native American or American Indian 

Other 

Please specify your employment status 

Employed in a driving related job 

Employed in not a driving related job 

Not employed 

Please specify your driving years 

2-3 

4-5 

more than 5 

Block 2 

In Los Angeles, there are a lot of route choices between two locations. In this part, we want to know your 
preference so that in the future, we can give you a better route recommendation. 
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Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 
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I have no preference 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 6/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

         
 

   

         
 

    

9/26/2018 Qualtrics Survey Software 

Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 7/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

   

         
 

     

9/26/2018 Qualtrics Survey Software 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 8/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

         
 

     

         
 

      

9/26/2018 Qualtrics Survey Software 

Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

Route B 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 9/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

   

         
 

       

         
 

        

9/26/2018 Qualtrics Survey Software 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 10/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

   

         
 

          

         
 

           

9/26/2018 Qualtrics Survey Software 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

Route B 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 11/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

   

         
 

            

         
 

             

9/26/2018 Qualtrics Survey Software 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 12/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

   

         
 

              

         
 

               

9/26/2018 Qualtrics Survey Software 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

Route B 

I have no preference 

Based on the following information, which route do you prefer? 

Route A 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 13/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview


   

9/26/2018 Qualtrics Survey Software 

Route B 

I have no preference 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview 14/14 

https://usc.ca1.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview

	Introduction
	Background and Motivation
	Contributions
	Structure of the Report

	Literature Review
	Routing
	Utility Theory and Preference Learning

	System Model & Problem Description
	Methodology
	Clustering Drivers and Learning their Preferences
	Socially Optimal Personalized Routing

	Experimental Results
	Survey Design Procedure and AMT Data Gathering
	Preference Learning Results

	Implementation
	Conclusion and Future Directions
	References
	Appendix: The Survey



Accessibility Report



		Filename: 

		Socially Optimal Personalized Routing with Preference Learning_201808_REM.pdf






		Report created by: 

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov


		Organization: 

		DOT, NTL





 [Personal and organization information from the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.



		Needs manual check: 0


		Passed manually: 2


		Failed manually: 0


		Skipped: 0


		Passed: 24


		Failed: 6





Detailed Report



		Document




		Rule Name		Status		Description


		Accessibility permission flag		Passed		Accessibility permission flag must be set


		Image-only PDF		Passed		Document is not image-only PDF


		Tagged PDF		Passed		Document is tagged PDF


		Logical Reading Order		Passed manually		Document structure provides a logical reading order


		Primary language		Passed		Text language is specified


		Title		Passed		Document title is showing in title bar


		Bookmarks		Passed		Bookmarks are present in large documents


		Color contrast		Passed manually		Document has appropriate color contrast


		Page Content




		Rule Name		Status		Description


		Tagged content		Passed		All page content is tagged


		Tagged annotations		Failed		All annotations are tagged


		Tab order		Passed		Tab order is consistent with structure order


		Character encoding		Failed		Reliable character encoding is provided


		Tagged multimedia		Passed		All multimedia objects are tagged


		Screen flicker		Passed		Page will not cause screen flicker


		Scripts		Passed		No inaccessible scripts


		Timed responses		Passed		Page does not require timed responses


		Navigation links		Passed		Navigation links are not repetitive


		Forms




		Rule Name		Status		Description


		Tagged form fields		Passed		All form fields are tagged


		Field descriptions		Passed		All form fields have description


		Alternate Text




		Rule Name		Status		Description


		Figures alternate text		Failed		Figures require alternate text


		Nested alternate text		Passed		Alternate text that will never be read


		Associated with content		Passed		Alternate text must be associated with some content


		Hides annotation		Passed		Alternate text should not hide annotation


		Other elements alternate text		Passed		Other elements that require alternate text


		Tables




		Rule Name		Status		Description


		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot


		TH and TD		Passed		TH and TD must be children of TR


		Headers		Failed		Tables should have headers


		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column


		Summary		Failed		Tables must have a summary


		Lists




		Rule Name		Status		Description


		List items		Passed		LI must be a child of L


		Lbl and LBody		Passed		Lbl and LBody must be children of LI


		Headings




		Rule Name		Status		Description


		Appropriate nesting		Failed		Appropriate nesting







Back to Top
